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ABSTRACT

A method is presented to synthesize a switching signal which lin-
carly encodes a complex-modulated RF signal to an RF carrier fre-
quency. The switching distortion associated with this method is
ltmited to high-pass components out of band, Consequently, the
switching signal may be filtered after high efficiency amplification
to produce the linear RF modulation. The method requires a
switching frequency slightly higher than the highest frequency in
the band of interest.

1. INTRODUCTION

Conventional RF transmitter 1ake baseband analog in-phase and
quadrature signais and mix them to an RF frequency. Severe linear-
ity requirements are placed on the subsequent amplification stages
which then drive a power amplifier (PA}. PA’s fall into two calego-
ries: linear PA's or switching PA’s. Linear PA's display high linear-
ity at the cost of low power efficiency. Classically, switching PA’s
display high efficiency but only support constant-envelope {phase-
or frequency-modulation) formats.

‘We propose extending these switching PA's to linear modulation
by constructing a switching signal which is comprised of the
desired linear modulation plus out-of-band distortion. This switch-
ing signal can be amplified with high efficiency switching amplifi-
ers and can then be filtered to remove switching distortion,
preserving a replica of the desired linear RF modulation. Thus, a
transmitter with high linearity and efficiency RF power amplifica-
tion can be realized. The signalling scheme presented in this paper
is termed distortionless RF pulse-width modulation (RF-PWM).
The framework for this signalling scheme is a modulation format
called click modulation {1, 2]. However, it has been shown that
click modulation is really a pulse-width modulation (PWM}
scheme with prefiltering [3]. Consequently, the signalling scheme
presented in this paper 1§ a novel form of pulse-width modulation
which up-converts a signal from baseband to an RF carrier.

2. BACKGROUND

Methods have been proposed before to represent a modulated RF
signal as a switching signal. The use of a 1-bit sigma-delta loop

running at 4 X f. {f. being the RF carrier frequency) is the sim-
plest choice [4]. However, this signalling scheme has transitions at
the rate of 4 x fc; this means that it has twice the number of tran-
sitions that a constant-envelope signal would have. This is undesir-
able since such a signal would create twice the switching loss in a

PA. However, the operations required of a 1-bit sigma delta are
very stmple, and therefore do not present great signal processing

hurdles. Another method has been proposed, extending the notion
of pulse-width modulation to include phase modulation {5]. Due to
the RF nature of the signalling, a trigonometric mapping must be
used to compute the desired pulse width. These polar-based map-
pings are intensive calculations, since the intermediate quantitics
are not bandlimited. However, the signals switch at a rate of

2x f. onaverage. Due to the non-bandlimited nature of the polar

mappings however, higher order harmonics are not bandlimited
and therefore interfere with the band of interest. Consequently, this
method of RF-PWM 1s not stricily distortionless and is limited to
small percentage bandwidths.

3. CLICK MODULATION

A brief description of click modulation is presented here. For a
derivation, see the original paper by B. F. Logan [1]. The basic gist
is as follows.

Click modulation generates a pulse which represents a baseband
signal (without dc) which is limited to frequencies f which satisfy

Ifle [wvl. (H
The desired real signat 5(r) should satisfy
(sgns() @ K(2) = x(0), (2)

where K(1} is a low-pass reconstruction filter and x(r) is the inpui to
the system and is the signal which s to be represented as a pulse.

The output of the system is

y(1) = sgn(s(1). €)
This may also be written, for a real signal s(1),
Im{log(s( N} @K(1) = x(¥). 4)

since Im log(} is spectrally equivalent to sgn{). One such solution
to this equation is to set
5,01) = emvn, )

However, this signal is not real; we desire a real-valued signal that
obeys (4). Logan presents a theorem which says that if:
1. one produces the signal

F()y = x(0) + j2(1), (©)

where

20 = 2@ ™

is the Hilbert transform of x(z), and
2. one does not modify the spectrum of F(1) within [-e, o],

then the spectra of any analytic function of F{t} (including
log F(r) and e #F{2 ) will be unmodified within [, &] [6].
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So, our goal is to modify 5,(f) to make it real-valued without

changing its spectrum within [—ee, o) . We let

Z{ty = e—iF) 8
and then bandlimit it to B, by setting
(1) = Z() @ K, p(0), )

where K pft) is a low-pass filter whose frequency response is

identically one up to o and is zero past B, B> a > v. Then, z(1) is
bandlimited but log z(r) still recreates x(r). Now, if we synthesize
the signal

G(1) =:2(8) + 2+ (ne!*™ (10

4
the term z*(2)e’ o

has spectral support from [2c¢-f, 2¢).
Therefore, if we let 2¢ - > o, this will still recreate x{¢). One
thing to note is that G{) can be written as

J2Ret

—j2ncr jzrml

Git)=e [z(e (1
The term in the brackets is a real signal s(t). Therefore,
Im{log(C(£))} = Im{log(s(1})} + 2mer + 2n,m. We need the
2nx since the Im log( } of a real signal is either 0 or w, however,

with the additional phase of 2mcr, the result Zs(t) + 2nct would
be more than &. Therefore, we need an integral multiple of 2x.

+ ¥ {Ne

The main point to note is that s(¢} makes jumps up and down in
phase, while Gfr) makes jumps only downward, because it is
biased with a 2rcr ramp. Consequently, sgn(s(t)) (which is spec-
trally equivalent to Im{log(s(#)}} does not spectrally represent g(¢)
(nor x(1)). However, if s(t) did make phase jumps only upward,
then it would represent G(t) (and therefore x(r)). To facilitate these
positive jumps, Logan explicitly introduces negative jumps
in-between the jumps of s(1), therefore flipping the s(1)’s negative
jumps and making them positive. These explicit negative jumps are
periodic with period 1/(2¢). Therefore, they introduce distortion at
multiples of 2¢, which is out of our band of interest. Note that the
switching frequency is 2c--that is, the output y(t) rises and falls
once every I/42¢).

PWM produces a linear replica of the duty ratio plus switching
harmonics. These switching harmonics include phase-modulated
replicas of the duty ratio [3]. Due to the nonlinearity of the
phase-modulation process, the switching harmonics are not strictly
bandlimited {although they decay quickly) and interfere with the
baseband signal.

Click modulation offers a way to bandlimit these harmonics. It
effectively pre-filters the phase modulated signals such that they
don’t interfere with the baseband signal. However, one must do so
such that the baseband signal is also not perturbed. By performing
Hilbert transforms and converting to analytic signals, Logan is able
to pre-filter the duty ratio such that it is not perturbed within the
band of interest. Yet, upon phase-modulation, it is still bandlim-
ited.

In most PWM systems, the switching frequency can be chosen to
be large enough such that the phase-modulated replicas of the duty
ratio have decayed enough to be negligible within the band of
interest. However, in the case of RF-PWM minimizing the switch-

ing frequency is critical. Consequently, we seek a method of pro-
ducing our RF signal with low distortion and with a low switching
frequency.

4. DERIVATION

Distortionless RF-PWM attempts to produce a signal

¥{(1) = sgo(s(n). (12)
With the property that
¥ @K = (1}, (13)

where x{1) is given by

J2mf .t
x(#) = Re{u(r)e 1. (14)
and wu(¢) is a complex-valued signal bandlimited to [-8, B). K(1) is a
band limiting reconstructive filter. K(¢) is ideally a brick-wall filter
covering a band of width 2B centered at f,. Its Fourier transform

Kg(f) is given by

K,F(f)={i:fc-3<%f\<fc+3 1s)

0, elsewhere

Equations (13) and (15) define the term distortionless. It means
that any distortion components of the signal y(s} fall out of the
band of interest—that is, out of the support of X g{f).

From the theory of click modutation, one would compute the Hil-
bert transform, take the exponentiat, low-pass filter, and then pro-
duce the square wave representation. However, due to the
band-pass nature of the signal, all these steps are not necessary.
Consequently, we simplify the necessary computations greatly.
First, the Hilbert transform of x(z} is given by

J2Rf.t

i) = Im{u(n)e 1. (16}

which requires minimat computation. Therefore,

_—
F(oy = a(ne’ """ a7
Next, we take the exponent and expand it as a Taylor series
- "o, .
3 =i 2
Ziny = ¢ PRy 2 (-—Jy(ltlem ﬂfrf‘ a8
n:

n=1
However, since we will next low-pass filter, we may choose our fil-
terKyptohave @ = f = .+ B. Provided that f > 28, each of

the terms in Equation (18) is spectrally orthogonal and we may
choose only the terms which have frequency content below .
Therefore,
ienfa

z(!)®Ka.ﬁ = 1 - ju(t)e o, (19)
This simplification represents an immense reduction in complexity,
since no exponential needs to be evaluated (therefore omitting the
need for a look-up tabie). In addition, from Logan’s theory, the fil-
ter K, g must have frequency response identically one up to ¢, and
be identically zero after . These constraints are highly impractical
if one were to actually design the filter, especially if one wants to
make the transition band, B-ct very small. In effect, they would
result in an extremely high-order filter, which would therefore
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involve much computation. Since we can set o = B, we do not lose
any spectral efficiency in leaving space for a transition band. This
allows us 10 use the minimumn switching frequency possible by let-
ting c=(ce+f)/2. This system is shown in Figure T as click modula-
tion, and in Figure 2 as NSPWM.

Figure 1. Single-Sided Distortionless RF PWM implemented
as Click Modulation

Figure 2. Single-Sided Distortionless RF PWM implemented
as PWM

One shortcoming with the above system is that it must switch at 2,
which equals 2fc+2B. However, the system is currently modulating
only one pulse edge; the other edge is periodic. It would be nice if
one could halve the switching frequency and modulate both edges.
This is equivalent to making the phase jumps of G(t) alternate pos-
itive and negative. One method of achieving the desired result
would be to make every other phase jump of G(#) be a negative
jump. The transition lime would need to be changed, of course. If
one were to input -uft) into the system, one would obtain -y() at
the output. Correspondingly, one should be able to aliernate jumps
of G(t) formed by putting 1(t) and -t} into the system. By invert-
ing every other jump, one would obtain the desired result. To
derive the necessary system, assume that G ,(r) corresponds to u()
and G,(t) corresponds to -u(¢). Then,

G, (1) = 2,0 ¥z, e’ ™ .0
jznf

fot eercc.r

= (1-ju@e ™"y + (14 june™™

and

j4ncr

(2n

G, (1) = 25,0 + 2, (e

e .
= (4 jue ™y (1= june e
j

However, since G,(t) and G, (t) are modulated with a positive

phase, their jumps are both in a negative direction; we want them
to be in the opposite directions. Therefore, we set

=jarct

Go() = Gy M) = 21 + z5(Ne (22)

Now, we find that Im{log(G;(¢))} makes negalive transitions twice
every I/c, and Im{log(Gyft))} makes positive transitions twice
every 1/c. We wish to multiplex these transitions, taking one nega-
tive transition from Im{log(G,;(1)} and one from Im{log(G.(th}.
giving one negative and one posilive transition every I/¢. This is
equivalent to reducing the modulation by one half so that
Im{log(G,(1))} makes a negative transition once every l/e and
Im{log(G,(1))} makes a positive transition once every //c:

jamer

G]([) = Z](O"'Zl*(f)e 23)

—j2mer

Go() = zy*(1) + 7,{De (24)

However, we are not guaranteed that the transitions will be inter-
spersed—for example, G; could make a transition, G, could make
two transitions, and then G; would make its transition. The output
would go negative, positive, negative (due to G,’s second transi-
tion), and then positive again. This is catastrophic, since G; should
only modulate a negative transition and G, should only modulate a

positive transition, In fact, we are almost guaranteed that this dou-
ble-transition will occur since £ has frequency content close to ¢
and therefore flips phase approximately every I/{2c). This situation
is shown in Figure 3.

s

2o,

Figure 3. Illustration of Double-Transition in G (¢} and G(1)

To combat this double-switching condition, we offset G,'s phase
ramp by /2. Therefore, we finally have

—j2mct
s

Golt) = —Jz* (D) + jzylt)e (25)

and ¢ is the switching rate. The signals of interest are shown in Fig-
ure 4.
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Figure 4. Illustration of Signals With G,(1) Offset in Phase

Note that although the signal switches on average at a rate ¢, there
are periods where there are two positive transitions; these periods
are compensated by a period with no positive transition.

The resulting system switches at a rate c. However, c still equals
(o+B)2. Recall that previously, we set o=P=f +B. Therefore, the
sysiem can switch at a rate f,+B. The final system is shown in Fig-
ure 5, Spectral plots of the output are shown in Figure 6 and in Fig-

Figure 5. Two-Sided Distortionless RF PWM

ure 7, for a carrier frequency f,. of 1.024 GHz, an input of two
complex tones at 22 MHz and 32 MHz, and a switching frequency
of 1.4f.. The output is distortionless up to the switching frequency.

5. DISCLAIMER

The technologies described in this paper are covered by a pending
Motorola, Inc. patent.
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